Increased chromatin heterogeneity in circulating tumor cells (CTCs) is associated with high levels of HER2 expression in metastatic breast cancer (MBC) (2019 AACR Abstract #1919)


1. Departments of Medicine, Division of Hematology/Oncology, Robert H Lurie Comprehensive Cancer Center, 2. Department of Pathology, Feinberg School of Medicine, 3. Morsczik School of Engineering and Applied Science Northwestern University, Chicago, IL

Introduction

• Circulating tumor cells (CTCs) play a critical role in the process of tumor metastasis, even after systemic treatments including surgery, chemotherapy and radiation. We previously reported that overexpression of HER2 in CTCs is associated with detection of clusters, more aggressive clinical features and prognosis in MBC (2018 AACR #5195).

• Meanwhile, alterations in chromatin nano-architecture is one of the earliest events in neoplastic transformation, which occurs during field carcinogenesis and is noted in a variety of cancer types. Dr. Backman have demonstrated that Partial Wave Spectroscopic (PWS) related high order chromatin abnormalities can be used to predict risk of carcinogenesis in colon, lung, esophagus, ovarian and prostate cancer.

• Herein, we report a new finding that a widespread variation on chromatin distribution in CTCs is associated with HER2 expression in MBC which may indicate more aggressive tumor, and help to understand MBC metastasis and predict treatment benefit, especially for metastatic or recurrent disease and it is potential utilization in clinic.

Materials and Methods

• Patients: Whole blood sample (7.5ml/each) was collected from stage III/IV BCa patients before therapy at the Northwestern Memorial Hospital in 2017 that had longitudinally detection of circulating tumor cells (CTCs).

• CTC enrichment and enumeration: We used FDA approved CELLTRACKS ANALYZER® System (Figure 1) and CELLSEARCH® CTC Kit contains antibodies targeting the Epithelial Cell Adhesion Molecule (EpCAM) antigen for capturing CTCs, Anti-C-K-PE which is specific for the intracellular protein cytoxin in epithelial cells. DAPI stains the cell nucleus, anti-CD45-APC is specific for leukocytes, and anti-HER2/neu-FLU is specific for HER-2/new antigen.

• Parsortix® System: Live CTCs enrichment was performed by using Parsortix system (ANGLE) utilizes microfluidic based 10μm separation (Figure 1B). The captured CTCs were stained by Anti-C-K-PE for epithelial cells, DAPI for nucleus, anti-CD45-APC for leukocytes, and anti-HER2-FITC.

• Partial Wave Spectroscopic (PWS) microscopy (Figure 2): CTCs chromatin packing density was scanned by Partial Wave Spectroscopic (PWS) microscopy which is a label-free spectroscopic microscopy method that resolves structures in cells and quantify the cell nucleus heterogeneity of chromatin packing density scanning between 20-350 nm, or from the k-b pair to 10 Mb-pair range. For each nuclei, the nanoscale heterogeneity of chromatin packing was analyzed as nuclear statistical parameter standard deviation Σ (sigma, RMS)

Results

• We identified 400 CTCs by CellSearch system, including 115 HER2+ CTCs and 285 HER2- CTCs (Figure 4).

• The live CTCs were sorted by Parsortix system and were processed with multiple staining and scanning by PWS microscopy. CTCs were classified based on morphology and correct phenotype as CK+, DAPI+ and CD45+. There were 97 acquired nuclei that were scanned and evaluated successfully, including 17 HER2+ CTCs, 12 HER2- CTCs and 80 non-CTC cells (Figure 3).

• According to the images analysis, stronger nanoscopic variations at each pixel in internal structure represents higher chromatin distribution heterogeneity quantified by RMS. The average RMS was 0.05152 in CTC cells which is significantly higher than the non-CTC population (RMS=0.0381, p<0.01) (Figure 4).

• Moreover, the HER2+ CTCs demonstrated the highest nuclear sigma (RMS=0.05366) among all the subgroups when compared to HER2- CTCs (RMS=0.04546, p<0.01) (Figure 4).

Conclusions and Implications

• This is the first report evaluating chromatin heterogeneity in CTCs demonstrating the ability of using PWS microscopy for chromatin analysis.

• High RMS indication of higher chromatin distribution heterogeneity is associated with more aggressive phenotypes such as CTCs HER2 expression.

• This novel property of CTCs requires further evaluation and validation but, it may offer a novel dimension in the understanding of the metastatic process.

Acknowledgement

This work is supported by Lynn Sage Breast Cancer Research OncotET Program, Robert H Lurie Cancer Center

Contact information: Massimo.Cristofanilli@nm.org

Figure 1A: Semi-automated fluorescence CELLTRACKS ANALYZER® with antibodies targeting EpCAM for capturing CTCs for CTCs enrichment.

We use DEPArray for single – cell isolation (Figure 1B)

We used Parsortix system for live CTCs enrichment and isolation (Figure 1C)

Figure 1 Major instruments we used for this study

Figure 2. Partial Wave Spectroscopic (PWS) microscopy equipment is Backman’s lab

Statistics: Kruskal-Wallis test was used for statistics.

Figure 3. A. Chromatin Nanomaging and Multi-scale Modeling Platform

A. CTCs chromosome packing density was scanned by Partial Wave Spectroscopic (PWS) microscopy which is a label-free spectroscopic microscopy method that resolves structures in cells and quantify the cell nucleus heterogeneity of chromatin packing density scanning between 20-350 nm, or from the k-b pair to 10 Mb-pair range. For each nuclei, the nanoscale heterogeneity of chromatin packing was analyzed as nuclear statistical parameter standard deviation Σ (sigma, RMS)

B. Images of CTCs (A) and chromatin packing density signal (B). HER2+ CTCs demonstrated the highest sigma (RMS=0.05366) among all the subgroups when compared to HER2- CTCs (RMS=0.04546, p<0.01) (Figure 4).

C. Chromatin Nanomaging and Multi-scale Modeling Platform (from Dr. Backman’s group)

Figure 4. Images of CTCs (A) and chromatin packing density signal (B). HER2+ CTCs demonstrated the highest sigma (RMS=0.05366) among all the subgroups when compared to HER2- CTCs (RMS=0.04546, p<0.01) (C).

Figure 5. A. Chromatin Nanomaging and Multi-scale Modeling Platform (from Dr. Backman’s group)